Damage detection in 3D truss structures using grey wolf optimization algorithm and natural frequencies
Main Article Content
Abstract
This research presents the prediction of damage in 3D truss structures using the Grey Wolf Optimization algorithm (GWO). Natural frequencies are adopted as an objective function for optimization. To assess the behavior of 3D truss structures, a finite element model is used. The results, which are based on MATLAB code, are shown to validate the potential practical use of GWO.
Article Details
References
[1] L. Abuallgah, ”Particle swarm optimization: Advances, applications, and experimental insights”, Computers, Materials and Continua, Vol. 82(2), pp. 1539-1592, https://doi.org/10.32604/cmc.2025.060765, (2025)
[2] D. Chauhan, Shivani, and P. N. Suganthan, ”Learning strategies for particle swarm optimizer: A critical review and performance analysis”, Swarm and Evolutionary Computation, Vol. 98, p. 102048, https://doi.org/10.1016/j.swevo.2025.102048, (2025)
[3] C. Blum, ”Ant colony optimization: A bibliometric review”, Physics of Life Reviews, Vol. 51, pp. 87-95, https://doi.org/10.1016/j.plrev.2024.09.014, (2024)
[4] R. F. T. Neto and M. G. Filho, ”Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research”, Engineering Applications of Artificial Intelligence, Vol. 26(1), pp. 150-161, https://doi.org/10.1016/j.engappai.2012.03.011, (2013)
[5] T. Bhoskar, O. K. Kulkarni, N. K. Kulkarni, S. L. Patekar, G. M. Kakandikar, and V. M. Nandedkar, ”Genetic algorithm and its applications to mechanical engineering: A review”, Materials Today: Proceedings, Vol. 2(4-5), pp. 2624-2630, https://doi.org/10.1016/j.matpr.2015.07.219, (2015)
[6] O. Ramos-Figueroa, M. Quiroz-Castellanos, E. Mezura-Montes and R. Kharel, ”Variation operators for grouping genetic algorithms: A review”, Swarm and Evolutionary Computation, Vol. 60, p. 100796, https://doi.org/10.1016/j.swevo.2020.100796, (2021)
[7] H. Xu, S. Lin, Z. Zhang, and Q. Deng, ”Differential evolution based on two-stage mutation strategy and multi-stage parameter control”, Applied Soft Computing, Vol. 180, p. 113387, https://doi.org/10.1016/j.asoc.2025.113387, (2025)
[8] J. Fang and Y. Xi, ”Neural network design based on evolutionary programming”, Artificial Intelligence in Engineering, Vol. 11(2), pp. 155-161, https://doi.org/10.1016/S0954-1810(96)00025-8, (1997)
[9] K. Hoppe, F. Giesa, G. Schaldach, M. Thommes, and D. Pieloth, ”Optimization of filter structures by evolutionary strategies”, Materials Today Communications, Vol. 38, p. 108510, https://doi.org/10.1016/j.mtcomm.2024.108510, (2024)
[10] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ”GSA: A Gravitational Search Algorithm”, Information Sciences, Vol. 179(13), pp. 2232-2248, https://doi.org/10.1016/j.ins.2009.03.004, (2009)
[11] Y. C. Toklu, ”Application of big bang - big crunch optimization to resource constrained scheduling problems”, KSCE Journal of Civil Engineering, Vol. 22(12), pp. 4760-4770, https://doi.org/10.1007/s12205-017-1549-y, (2018)
[12] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ”Grey wolf optimizer”, Advances in Engineering Software, Vol 69, pp. 46–61, https://doi.org/10.1016/j.advengsoft.2013.12.007, (2014)
[13] T. Sang-To, H. Le-Minh, S. Mirjalili, M. A. Wahab, and T. Cuong-Le, ”A new movement strategy of grey wolf optimizer for optimization problems and structural damage identification”, Advances in Engineering Software, Vol. 173, p. 103276, https://doi.org/10.1016/j.advengsoft.2022.103276, (2022)
[14] H. Emamjomeh, M. Nikoomanesh, J. Cabage and M. R. Nikoomanesh, ”Identification of damage in truss structures using the fuzzy colliding bodies optimization (FCBO) method with frequency and mode shape-based objective function (FMCBI)”, Structures, Vol. 80, p. 110087, https://doi.org/10.1016/j.istruc.2025.110087, (2025)
[15] M. Farhadi, R. Ghiasi, and P. Torkzadeh, ”Damage detection of truss structures using meta-heuristic algorithms and optimized group method of data handling surrogate model”, Structures, Vol. 65, p. 106736, https://doi.org/10.1016/j.istruc.2024.106736, (2024)
[16] A. Kaveh and A. Zolghadr, ”An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes”, Advances in Engineering Software, Vol. 80, pp. 93-100, https://doi.org/10.1016/j.advengsoft.2014.09.010, (2015)
[17] L. X. Qui, ”A deep neural network-assisted metamodel for damage detection of trusses using incomplete time-series acceleration”, Expert Systems with Applications, Vol. 233, p. 120967, https://doi.org/10.1016/j.eswa.2023.120967, (2023)
[18] T. Sang-To, H. Le-Minh, M. A. Wahab and T. Cuong-Le, ”A new metaheuristic algorithm: Shrimp and Goby association search algorithm and its application for damage identification in large-scale and complex structures”, Advances in Engineering Software, Vol. 176, p. 103363, https://doi.org/10.1016/j.advengsoft.2022.103363, (2023)
[19] D. Q. Vo and H. L. Ton-That, ”Free vibration of simply supported steel I-girders with trapezoidal web corrugations”, Reports in Mechanical Engineering, Vol. 1(1), pp. 141-150, (2020)
[20] H. L. Ton-That, ”Plate structural analysis based on a double interpolation element with arbitrary meshing”, Acta Mechanica et Automatica, Vol. 15(2), pp. 91-99, https://doi.org/10.2478/ama-2021-0013, (2021)